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Chapter 1

EHEL . BRSEE

1.1 3|15: Hf4a=2ER?

N e o) R AR AT T DL SONE T RE PR ASEA T SR B ARSI . 18
N T ReMR, X—id R AEZE (Search) . WIHRIAEE A HADSE 4 44K, XFhE
ZatH A N8 (Game Playing).

ABERATEER e (Agent) BIRFERMN, MEFEMTE HiFE, 2IH&T
FIRE A* 5%, BRI 50 TR BB REE, R AHIE & TR SR RIg i 2R .

1.2 #BREBIFERLENX
FE W BRI AT, TR T RO & P U 4 R AR

EX: RERPE A ITH

—MRAERFE R B T AR (S, 50, A, T, C):

1. JRZS=E) (State Space, S): AR ECREHIES (Fldn. A A
F)o

2. RIS (Initial State, so): FREARMIALIG S, so € Ss

3. EHE (Actions, A(s)): 7EIRA s FEEEENES.

4. &R (Transition Model, T(s,a)): IREHEMEL s = T(s,a).
5. BRI (Goal Test): HIWr4ATIRA T N HAR.

6. BEAAN (Path Cost): C(s,a,s'), EHREE PR




1.3 EEEH#ZE (Uninformed Search)

Tof5 B2 (Blind Search) fREBERRAEMICT “ HAREMER” AR, H At
e I 348 )73 o

1.3.1 FEEML (BFS) 5REM% (DFS)
R PR S, 1 55 T T

HE REMAER (BFS) REMKRER (DFS)
RHEE ZEEHEH (Layer-wise) — 2%k E R B (Backtracking)

BELEH  BASI (Queue) - #E5EH 4% (Stack) - FiESH!
et & (RERM, —EdkE) B (TRBATRES )
R & (P mER) &

RESERE O(b%) o(™)

FEERE ObY) (WEURE, BE) O(bm) (LMK, ]RIK)

1.1 BFS 13 DFS X (b 520 T, d: BRURFE, m: BOKIRPE)

Fid: BlIRRR

NAT 4 BFS B WAAEH? ] B 3ZH T b =10 (B EOH 10 5688,

o DFS: &—MIUMERITE, RIcBRIXMB. WERN 10 B, JAFE 10 A1
R, #SE N FAERAK .

« BFS: B8RS RN 10 i, FEFICES 10 ERIFE T A (1010
A, AFBRIARAE o

BB HEE:. DFS #1 BFS fEHin=

. BFS: i & B HE R, WUk e sk i s M, e I d e B

« DFS: &&aHERRIA W RMATEE, MA@, By, &8
PEAS I o

- DEBRBIGR: HAFHIRN, %% E DFS.
o AMHZIREE: DFS AJ DL IR B QIR B e b N JE R 70 32




1.4 BAIXEZE (Heuristic Search)

N T RRE HERRCER TR, JAT5IANBEZERE h(n): MiH TR n 2 HER
W MUY BRI RANCG BT LR, B E AT, B RERFAE R, M
[IDPNUEY Tk sl
1.4.1 A* B (A-Star)

A* LR a7 RN 5B A NG MRS R AL, 0 B2
R P RT, EFLEEAN RN ST R, MR RIER R R, RERIE
B EAUME CRTIRAL A KRR EAT RN

f(n) = g(n) + h(n) (1.1)

i,

o g(n): WESF A n MEIA

o h(n): WA n BRSBTS O REED.

o fln): ARG, TR R A
TLIE A MG RATH

. g(n) M B EL B

o h(n) RAHTELA R AL

o f(n) BRI RO TR IR — BEE R £, % K.




A* BEARE

Algorithm 1: A* #Z S

Input: #2 5 start, B¥r goal, J5 K EEL h(n)

Output: ML 2] H bR B4
1 ML BAF Open, ¥ start I Open, g(start) = 0;
2 VBT S Closed ; /] BT RTARES
3 while Open 3EZ do

4 M Open HELH f(n) BRI current;

5 if current = goal then

6 | | return it MRS E

7 end

8 ¥ current M Closed;

9 for &/~ current #94R & neighbor do

10 if neighbor € Closed then

11 ‘ continue;

12 end

13 TR tentative__g = g(current) + cost(current, neighbor);
14 if neighbor ¢ Open 3 tentative g < g(neighbor) then
15 parent(neighbor) = current;

16 g(neighbor) = tentative g;

17 f(neighbor) = g(neighbor) + h(neighbor);

18 if neighbor ¢ Open then

19 ‘ 4 neighbor A Open;

20 end

21 end

22 end
23 end

24 return X%, HARARTIA;

K RIFRR
« 5EBAFI (Open): #% f(n) HEF, TRAERIRY R A A EI T .
« Closed & : IHKCAY BRI R, BLELY R
o AIRYME (Admissibility): fRIE h(n) < h*(n), ff A* RNEEE MM

o« —E!' (Consistency / Monotonicity): # h & —ZE, I A* fEERE RS
AN EHY T R

10



o ERREH: WA ROCRACT AL B H AR A AT 2 e B A .

Fid: BlHERR

JA R PR BT S, R A O, R

h(n) =0 I, A* iB46 N Dijkstra Bk,
JA R BB ARAG, T RIERIUEE R T S 2.
o Rk, MR AL, ERERIERTL.

1.5 X ZE (Adversarial Search)

LI AAE R A BERE RN AR BERN 2 DR RERR, $% A g A
e i — R R B AR LR ) R, A N TEZEE)R (Game Problem). SR 544
SRt B EERRBLLL S S RN G2 EIX I, B RN E S R
S HATEIEAIR, I 200 s T ] BER U s 5 S o

FENTRREY, KEMBHEEMGONTREREE, WX HFPRE . w173k
DA RS &8 bR AT e AN . RIS, VR 2 A2 gE CanBiRiEsk) sy EMEIE
(Zero-Sum Game), RI—J7Hlas e a5 15—k, MBI RRA:

Unax (5) = —Unin(S)

FEFAMEFRBET , XTI H RS R, 45 i S M EniE T, (83204

1.5.1 Minimax &£

AN
ol B8

Minimax 53T —PNRERE: SFRESEMM. Wit i:
o 7T (Max) BAREHR AL E ORI HRE N ;
o XF (Min) 2B H/IMEEMILE GG TR E SRR .

PRLtE, RIS, R RO T2 U8, TS AHERIMER T e RIER &
WammK. X BEAEEHFRPHRRNMUEXRWEEN (Minimize the Maximum
Loss).

FE 2R

o Max T ERRE B TITE);

o Min g &R BN FAT3;

11



o M RROR A RIIRES, AU RN s B E R A

EX:
Utility(s), A s M A
Minimax(s) = ¢ max,e(s) Minimax(Result(s,a)), # s ¥ Max 155 (1.2)
Minge 4(s) Minimax(Result(s, a)), 4 s A Min 755
Horr:

o s FORMZER IR R
. A(s) FrA s FHTE AL

« Result(s, a) RATERE s PATEIE o J5 FRARBARES:

. Utility(s) RARRE LM, T EHRZREN Max HILFHFE.
ke

1M S CHRTRTED HR, TR IR M2

2. KEFH I RERIATENF A, IR A R

3. E A R

o Max 7 RUEFH T P RO E
o Min 1 U FE 7T R 1 B/ ME

4. FEARTT A REXT R K Minimax B RIZNEAE it ik .

PR
o A EX TR IR B REITHIRTR T, Minimax fRIER SR AILH
g%

o STEM: HEZEREAMRE, W Minimax —E R4 1L,
o BEIERE: O0'), Hi b AR T, d NERIRE;
o FEIERE: O(bd) GREMREEID.

ThXH:

12



function Minimax(node, player):
if node is terminal:
return Utility(node)
if player == Max:
value = -
for each action in node.actions:
value = max(value, Minimax(Result(node, action), Min))
return value
else:
value = +o
for each action in node.actions:
value = min(value, Minimax(Result(node, action), Max))

return value

1.5.2 Alpha-Beta 5#%

R Minimax fE3S P2 RMRR, HHETHEE 4 ERIEIRRE 2RI K.
SERRIA R Can E bR GEERD, 584 I ZEM R AT AT, Alpha-Beta BYAZiE
PERTHFR N A BER M IR RIS, B E W R =

Alpha-Beta BYF: f#% .0 AR 7R RSP 49— 250 AR E X8 (o, 8]
HAEZLIX (8] Toi s ek e 5 1B 2R

=5

N

e

o a: TR L, Max &R URIER BN CF D,

o B: HHETEAR L, Min ATRLSEINZE Max MRl (E5.
LiEEL SV

o o W HIREHE

o /RS,

EE S
o f£ Max Wrl, HARIMKE—TWAHME > 8, WA BLZRMS IE R Z AR T
T

o fE Min T, HRIE-THRME <o, FFERTLUE LSRR,

KRB R ERTER T, WF—EAS RV Kk, HERATTREZ iR
MU R AR
Alpha-Beta {A{X5:

13



function AlphaBeta(node, alpha, beta, player):
if node is terminal:
return Utility(node)
if player == Max:
value = -
for each action in node.actions:
value = max(value, AlphaBeta(Result(node, action), alpha, beta, Min))
if value >= beta:
break // Beta B
alpha = max(alpha, value)
return value
else:
value = +wo
for each action in node.actions:
value = min(value, AlphaBeta(Result(node, action), alpha, beta, Max))
if value <= alpha:
break // Alpha ¥ &
beta = min(beta, value)

return value
TERE 4T
o TEHMRATRUNT T, Alpha-Beta MBS AIEAERFEZ O(bY?);
o BIRCAZHA Minimax FIRARFELR, (URDTHERE;

o SERRVERE R EAREUT T R RIFNF -

1.5.3 I\EE
o XtPIE RIS BN FAT A, AR RS R SE S IR TR AT R O
o Minimax BIEAEF N85 B R P ORIE R 21 f 0 0 5
o Alpha-Beta BYFz i [X 8] FBR 5 25 D3 2B, i AN s 01

o FERPRERMEGES, BRESRERBERSBEANTHMEL, AR5 RFET
B AT

14



1.6 FFEFREHER (MCTS)

S RIS R (Monte Carlo Tree Search, MCTS) & —FhJ& T FEHUAR L A0 e 5 14
R, JUHE S N & 7 S R Ak se AR 1 R 2R 1 28, A (Go)s BHiEE,
1200 SEAR Rl ik A W BLAELN & SR B AL TH AN S E AN E, A28 Minimax/Alpha-
Beta BYF AN 223058 A R R
1.6.1 MCTS gy#0EB18

MCTS % OAE T Gt Bl + R 2

o AFRESEEMRITARIPRE, RIEREALEN A LA E 2L

o A7 S ANAE R AR s, R RE P “ B R URIRR T
T L

o VUMNEZLMBE: 1E$E (Selection). # & (Expansion). ###l (Simulation). [g]
# (Backpropagation), JER(HE.

1.6.2 HKESFIAFESE: UCB A%

MCTS Ml @R MizEZERHaME RER), ERSECERIFHNE
& (FIRD?
MR BRIXAN A, MCTS i UCB1 (Upper Confidence Bound) A z:

- Y
UCB; = 2 4 ¢y 2

n; n;

(1.3)

Hrp

o wir TR AR RERIREL

o g TR G VTR IREL

o N: ST R I BRI E
c: WRRH, HHIRRSFIHIAE, BHELmIN V2.
I A SPRE

o BT FIA, PLYGIEIERER R AT AL

o BT ey /BN RER, PRSI FEDT R B KT R

15



1.6.3 MCTS B/ ERiERR

1. i&#¥ (Selection) MR 5JT4A, RYE UCB AR iL#F T A, WHE H A&k
A N AE, ELRIER MR Sy Y MY A

2. ' (Expansion) X T R5EEREIFHT &, BEHLIEF DR EEa L
JEHT R IFIAR

3. #&#l (Simulation) MFTAERHIT ROTHG, #EAT —RBOEEAL (Rollout).
o I A AL SRS B RRT S e TR 58 R R TR
o 1RBVBRAMMEER r, BHlEA 1, Fl 0.

4. [Bli# (Backpropagation) K45 AT EE A% 1a) b BE RN A5

w; < w; + 1

SR RSN [ K, DME N kS UCB 23,

1.6.4 MCTS BERIERs
Al DL RS HiiR MCTS:

function MCTS(root, iterations):
for i = 1 to iterations:
node = Selection(root)
if node not fully expanded:
node = Expansion(node)
result = Simulation(node)
Backpropagation(node, result)

return action with highest visit count from root

R A2

o IBARREOHZ, AT ERTER .
o ATDARERASIE GEESRI ORI, & —MATATI 2 ) o W 5592
o XFETSCA T I RR UL, RO AN 2 228 4l P A

16



1.6.5 SEEMHEEZTH
o BAINIERL: BN BA TN, 7T LMd FH 7 S PEA R B S R0R

o BITRE&EH : 7] 5] A RAVE (Rapid Action Value Estimation) 8 PUCB (Polynomial
UCB) RIHRRACE.

o FHTH: MCTS 5T ZLIEHEM, REHEREL,
o FHEMBES: W AlphaGo fHFSEIERZE + MMERMZ 5] T MCTS, $#2IHL).

1.6.6 MCTS B9tk =
=g
o ANFEETEERERPIRAS VAL BREL
o EUEMNAHER, HOH AR X R 2 L.
o AIHHT, FBHIAS R
R
o OOPBLAULSRME AR AR, AN AT BEANE HER
o m7r IR R E AR
o AERELT AL, WAMESTE IR

17



Chapter 2

FIRFRRSHIE: 1248, ANRESFIR

Ea B

HMIRF /R 5H#EH (Knowledge Representation and Reasoning, KR&R) & N L#
M0l —, HHPRRH I Se F o g Ese . S 56 & BUE 607 U oR 1ok,
FAE ML IR EREAT B . — AN RIFHIATR R R R Y[R B A& RIARE S5 AT HETE
M, RERERR S 28N, X RESCRR AT .

2.1 wp@iZiE51EREE (R/W&)

PR R, BRI, RS T D RO 1R
YRR IR, ARG TG A R BRI i 4
2.1.1 ®HEBHE

iz 48 (Propositional Logic) &A@ iR, HEARA ZHE, BE
FHMER R A .
HAEATE:

« AT PQ,R,...
o BIHEEA:

— BE: -P

o
=

PAQ
: PVQ
7. P—Q
: P Q

=
=

\
i
IS

48
=

18



BN A R B R E SO S, HER A AR SR R e A AT REIRAE N AR
BHNE,
R 5 ER:

o MR TR, HEEEM. wHE
o AR TERRR. JBIERE KR, RiLGEIIAR.

2.1.2 iBiEiZiE

N R U R IERE A R, 5] Ti81AiZ% (Predicate Logic, tH#R
—MiZE).
¥%iID3 R

o MK (WZ): z,y,2

o iH1: P(x), Loves(x,y)

— frEA: v
— fFAERI: 3

Pl
Vo (Human(z) — Mortal(z))

Fi R
o RIERETISR, AIHMIRR K
o HEBENE B Tl i

o EEFRG. MK R,

S

=H

2.2 JALEFEIE (Resolution) HIHEIEE S

RSB — A ET ROEAR BEhERAN, |2 T a2 5 — i E e
HHIE

AR HSE
AHFIREE KB 5 HAramd 15 5E ~a #HEFHTE, W KB E a.
HEIELIR:
LR A XA NEEER (CNF);

19



2. BEANTRAMAN T RES;

3. X HAN ST B AL A SR

4. HET A TA) O, MRERGL.

YALERN (apREIZSE):

(PVQ),(=PVR)=(QVR)

FF e

o SEf (fEam@ligH ),

- HTAM;

o DA R EIR .

2.3 MURESERZRG: wiE / ERE
BN SRR “BIR-TB 2" BRI ATSL, Rt 5 RGO IERE

2.3.1 FNFRR

FUI B — e 2R

IF Condition; A - - - A Condition, THEN Conclusion
il
IF Fever A Cough THEN Flu

2.3.2 AIEESEEE

BIfE$E (Forward Chaining):

o HRIKED

o MNEHIFESHKR, AWrfid &N,

o EAEWE. BRIES.

EE%E (Backward Chaining):

o HARIKZ);

o MWHFRHA, KInFHSCRE A

o EA S HEEHE.
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2.4 HMRENE (KG): =xhES5mAN (EHAAR)

FR B RE I R B S P I se ik 50 R, RIERMS AT 540431

B

2.4.1 =R~

IR A A A = TTeR
(h,rt)

Hr
o h: KSHE (Head)
o r: KF&H (Relation)
o t: RBSK (TaiD
il
(Paris, capital _of, France)
2.4.2  PEEETN . BRNITTERE (241D

SV P R N SE AR TN 5 23 W I 4 ) 22 25 1)
TransE t&R#!.
h+rxt

Xt REAT 73 PR L
f(h,’/‘,t) = _||h+r_t||

bk, =4 BRTRERAL .

2.5 ZEMUINMRSREE: RIEESAKHEE (BIEE

B RIES R (LLM) FIRRE, FF5 8RS SRR RS
KWEREBEER (RAG):

o EIRJE /SR ERE oR ZOAH s
o KRS RN FN

o RTPHSAERPE S AT AR
AR

21
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o DRI AT B AR HET
o R P AIHE DR
o GEff CIBRIRL)RE T L

KO AR T AT AL “Aigiit 7 GBI TS 4 M E” EEE

22



Chapter 3

R . fE T /RATSRASRS (HMM)

3.1 MHAER: FifRES5aasFiisa (NER)

3.1.1 MXAZEFIR (From Text to Knowledge)

FER AR PRI, FRATT TR EE AR M SO R SR B S AL S B Cansiefa i
KEFRD o HAo gLl AE 55 2 dr 4 5048 48101 (Named Entity Recognition, NER).

ENX: fEEERA (NER)

NER ) HArE R SCAS i B A R € 8 ORI SEAR, FRREELIASE. H LR se iRl
-

« PER (Person): A% (1. &id. FeAifo

« LOC (Location): M4 (. Jbxg. PLIRIE)D

« ORG (Organization): HZWIK4 (. PEANRKS:. FHO

15F
[lﬁg{@i]PER %ﬁ T U [ [ BE]LOC o

3.1.2 it ENIERR: FHERERIRR

THENCEER “HE” M&, WAIFHFZER NER U DFIIFRE (Sequence
Labeling) 18] . &% H K 7752 BIO bRitik:

o B-XXX (Begin): ST k.
o XXX (Inside): LA EEL4E 2

e O (Outside): AT

23



BMANFES (W) | & A X% 3
WEARE B®) | O O B-ORG I-ORG O O

#* 3.1: NER HIF 5 briER 5

3.1.3 FIIRERIHNIERR: AR, BOXR5 F1 5%

£ NER BOHAR P AIAREAE S5, FATTA S OB & 75 BE TR 1L/, 3675 2 &
WARFR PP P BE . AR AR
Predicted Positive | Predicted Negative

Actual Positive | True Positive (TP) | False Negative (FN)
Actual Negative | False Positive (FP) | True Negative (TN)

R 3.20 RS HRE IR E

o 15HAZE (Precision): TINNIEGIFIFEA A £ /02 HIE K EH)

brocision _ TP
recision = TP n P
« BEIZER (Recall): FrAsebs L4 o m o 1 r te sl
TP
Recall = m—m

o F1 3% (F-score): K% A [2] 2 (1 A1~ 25

Precision - Recall

Fr=2.
! Precision + Recall

f£ NER MIFPOURREARSS o, A BEF L A e BRI L # 4 5 TP, S
FP 5 FN. XA IFAL 75 1% b o B AR ZEAE 1 52 50 7™ 4

3.1.4 AHLEE HMM?

TEXANE A, AT CUE R ER “XZ450)7, XIERRE /R KA (HMM)
A Rz e

1. BOVGEBRIN: MTFRCFEFY (K7, “f2”, “N”7, .0 — XN HMM H
1 BUARZS

2. WAVRBEIER : BT G B ARARZE (O, B-ORG, ...). — XN HMM A
1) BRERZS -

3. E R —PNFR B-ORG B2 O, MUBRTXANEARE, BBRT B
M C(tetm “ N7 78 “ A K7 B & B-ORG, £ “IF N7 B2 0). — X% HMM
1] B/RA KB,

24



3.1.5 HMM 5 CRF #ZERFFIFREFHIR A
PRI /RAIKIER (HMM)
HMM 72 5340 5 1Ay v R ) 20 SR 7Y, LR A AR T
o BRI IIIE CCF 1) SR —MRERECRES (BRZ).
o AR HTREEURES RT3 — MRS (—M B RATRERIL)-
BABRICRAS =L — M UIIME R CREFEZD.
XI T NER:
o SMFEFF: A7 )i
. B 0f 8L (1 SR bR 2
RS S I F KA A 3 41 P T MR 236 SR T f T R (Y BRIk 2457 41, B B o 42
Viterbi %%,
ZHRENISH (CRF)
CRF & — b 28, ML HMM A ) LAMES-
o HMM AR, EE P(observations, states)
o CRF HIEEBZMMZ P(states|observations).

« CRF A RAR G HE A8 BRFERR E (an B7F 30, el FIRRHED, T HMM
IR TARSHERE AR

« CRF 7] DLt A 7 AR i PR, SE A sl 27 31 rh R 25 2 1) ) 4 JRy M
7 NER B} sequence labeling H':
o HMM 8 R 5 R B Sk vk B T RE AR 25 7 41 o
o CRF ilid A2 B KA BEANDR S 7 5 (K IR, R4 SRR s 04T ) 5

tb#: HMM 5 CRF

fE52fr NER /45, CRF {341t HMM M EwH &, THEHEZmEMNE R B cfE
WISZAREE . [FIRN, YR FERR (Precisions Recall. F1) tHREEBhIRATEALE R 1 RE
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HMM CRF
B A H) =
WM | S/RAT SRR CIRASHKID ARV, AT A RRHIE
FHAIE R i 1 PR R, A BT WIE. A S
F¥ 51 Fi Viterbi RN (RS AT B Viterbi)

% 3.3: HMM 5 CRF 7&)/78IFRiFAESS 5T H
3.2 HMM HEWBESENX

3.2.1 EWiF=: KRE5KEK

GARPRAE—MNEA G I ERE (REABISMIK RS, VRME— 115 BRI
FEVRIR AR BER A2 5 G UKL

o [EHURA (Hidden States, Q): ESERJRAEN (R IR, XA TEHENHE
BT

o WLMPRZS (Observations, V): HIAMIAT A (o, Alg). X2 EAZ WA,
FATA R WEE— R Iz, Bz, ARz FS, SRR LR IR s 2 T —
KA A=
3.2.2 HMM BB MRIR

HMM Z FrPLReTH &, 2By B Bl st i 7 Aok i faifh. (Bise):

EX: 1. FFRBRAXMBIE (Homogeneous Markov Assumption)

BN ZIFPRES ¢ RAMT A — N 2RSS ¢, SEFBPRETLR.
P(qlgi-1,9—2, -, q1) = P(alqi—1) (3.1)

At AR RAARRTAR, RIERLX.

EX: 2. MM (Observation Independence Assumption)

R ZIBIM 0 AT IZI ZIRRES ¢ 5 HARRS 2] RS BRI TR

P(0t|Qt; qi—1,0¢—1, - - ) = P(0t|Qt) (3-2)

AiE: RASRICTrCKRER, RBREATHSRRRAFR, RERKCECEXR,
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3.2.3 HMM WETHEREE \= (N, M, 7, A, B)

BINFETE RN N = (r,A,B), {H5E8E T :

—_

N BREBURSREE (. . i, N=2).

[N}

w

- (WIEIRES MR ) i) -
™ = P(q1 = Z)

B BANIE SIS (55—R), TIRE ¢ .
A CIREESHREERE) . fRRRCRS Z R AL .

W

aij = P(qi1 = jla: = 1)
Bl @il ASRERES 00 HRADRUIRE j FIMEE. L Zjvzl a;; = 1o
. B (WA MR R ) . 0 H PR AS AR RROW Il )it 2

ot

bj(k) = P(o; = klg: = j)

Bl AEIRZS 5 1, WIEIRTS kRS,
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3.3 [EJfi—: ¥iZERIE{E (Evaluation) —aIEIE X
BRI : A SEN = (1, A, B) FI—DWIF5 O = (01,09,...,07)0

BRI P(O]).

3.3.1 %jjﬁgif VS. Ej]u..xi)d?.']
o RS FIRETE TR BERR AR Q, EH P(0,Q|N), SJERA.
P(O[)) = }jP@QA P(Q[N)

BAREE O(NT), 1eBBIRE, méKTm
o HIMEYE (Forward Algorithm): FIAHZNEER], EREREN O(N?T).

TS oy(i) N ERZ] t, WS (o1, ..., 00), HEATFBCIRES G @ BUIEK

CVt(i) = P(017027 <o 04, G = Z‘)\)

3.3.3 HZXRESANEE
S8 1: AL (BRI ¢ = 1) S RUETIRE @ AWIE o) MIHEZR:
Oél(i) = Wibi(Ol), 1 S 1 S N (33)

FIR2: BHE (Rl t =1 - T 1) ZERZOPE. RATEIE a0(5), BIFER
WG § IR . EREASRITAATRERPIRE @ (1., ND:

y1(J [Z&t az]] (0141) (3.4)
BAE: A%
v uli)s SFAEARE i FATEIER F T BB
o aij: MWARIRE ¢ BRRIIRRES j BB,

o >o(.): MIRBENERE j A N K (NSRBI RK. NSRETRK..D,
Teamex.

o bi(o): BITHIRRGE j )5, BAUERE “ K" HBIRAIMIME 04




$IR 3: BIERZPMERRZ T W2 T RERES BB 2 A
O|>\ ZCYT

3.3.4 BIEEEAKE

def forward_algorithm(0, pi, A, B):
T = len(0) # WMl F7 K&
N = len(pi) # KAX
# alpha k% : Tz N

alpha = zeros(T, N)

# 1. Wi

for i in range(N):

alpha[0][i] = pil[i] * B[il[0[0]]

# 2 w#
for t in range(0, T-1):
for j in range(N):
sum_prob = 0
for i in range(N):
sum_prob += alphal[t][i] * A[i][j]
alpha[t+1][j] = sum_prob * B[jI[0[t+1]]

# 3. A1t
return sum(alpha[T-1])

3.3.5 REIEEL (Forward Algorithm) ——4 ZHIEfR
51F - ilfb*uﬂkl,u** (ﬁééfﬂm)
ERBA T = REMIT T, R KA

O = (VKELIHR, VKBLIHE, ¥51Z)
FRIECIR SRR R KA

S = {lfK (Sunny), K (Rainy)}
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o WIUEIRSHER

= (mp = 0.6, 1 = 0.4)

;%: EB | = arax
o REHME R
Qs 15

aF, i

s

M

— ags, gy = 0.7: WRSKRERK,

— ags, g = 0.3: WRASKRERK,

w = 0.4: WRSREMNK,
— ap, = 0.6: WRSRKEWNK,

o RUITHERFFE:

— ag,

_ bys (VKIELAK) by (312
big (VKIELAK) b (5 12)

o

IKIEE) = 0.9:

i (¢
(H&hz) =0.1:
i (
(

— R AW R IR L 0.6, W RIMER S 0.4,

ans, 0.7 0.3
A, W 0.4 0.6

W R 2R L0 R AIER
W RAZ R R IR
W RS R A o

R AE PR IR

|- o

RNz UK R
R UKL R A
UKBLR) = 0.2: W RMZ UKL IAEE

— by (KMZ) = 0.8: M RENZUKELR IR .

HI 17 2% B 5 X
ay(i) = P(o1, 00, . ..
BE: Wl ¢ ROGEWEBR KB, IF %

F—X (t=1):

y Oty Qt = Z‘)\)
t RIIRAA @ IRSECA B

oy (M) = s - by (01) = 0.6 x 0.9 = 0.54

6 - b(01) = 0.4 x 0.2 = 0.08

I HLAZ T OKBLR R B

30



o ai(F) =0.08: FH—RZWAK, IFHIZ IR

FZX (t=2):
0 (W) = oy () - ags, s + 01 (W) - agg, ] - by (02)
ARNHf -

s (1) = [0.54- 0.7+ 0.08 - 0.4] - 0.9 = [0.378 + 0.032] - 0.9 = 0.37

() = [0.54- 0.3+ 0.08 - 0.6] - 0.2 = [0.162 + 0.048] - 0.2 = 0.042
iR
o an(l) =0.37: BB IRIER, FEFTH R K B A B2
o ap(F¥) =0.042: 5 REMR, I BT R MROULINER 2 UK RIS 22

o BFODHERAE “WERTTREIRS MR x FEMMER” KA, e 5 RMER A

F=ZX (t=3):

XJWE%? 03 = /QHZ

a3(M) = [ (M) - ags, s + a2(M) - agg ws] - bis (03)
ay () = [0.37 - 0.7 +0.042 - 0.4] - 0.1 = [0.259 + 0.0168] - 0.1 = 0.0276

(M) = [0.37- 0.3+ 0.042 - 0.6] - 0.8 = [0.111 + 0.0252] - 0.8 = 0.1098

#1E (BEEKF):
WMFH O = (-, . ) KB,

P(OIX) = a3(I) + as(Fi) = 0.0276 + 0.1098 = 0.1374

ﬁ_-’ljl:%z\XIE\z:E:
o i) BV LR, N ¢ FAOEUR, RS KBIRA | B,
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o BRI o WA RI o, EITERIEFEAUR SRS, # % 7B IR
I

o WJEIEHTEATRERIEE T RARESH) ap (i) AN, A2 P 51 H ) SRR

BV IR

- AU SRR — 2B, RERIE ISR — 1 R, B IBER
K. - ISR — R SR TR, AHEEWE. - K5 ra B
FPNELR, AL R 51 I A A
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3.4 [O)@E”: fZAE[0)F (Decoding) —Viterbi H%

O RfEIA: AR E N A O.
Br: B KA TREMEEIRS RS Q* = (¢, ..., ¢)-
o). @idiEs 3 Repskidbik, JEBTX 3 RRTAER “BF-I5-J/ 7,

3.4.1 Viterbi TE 0,(i) BFIENX
ST EERDL, EIRATRERA, TR R A

EX: BABEEE 6,(i)
FERSZY ¢, IR R ZNEIRES ¢ HWM PP 3 & i RHER .

0:(1) = max P(q1,.-,G-1,q =1,01,...,0(\)
q1;--,Gt—1

N T R, BATER B MERAR (i) CFRAEM— TR A2
5T HETRRIUIRES .

3.4.2 EERTE
S 1. ¥

01(1) = mibi(o1) (3.6)
¥i(1) =0 (E24R RUBA FTIX) (3.7)

TR 2: B (K Max) X T t=2,...., T flj=1,...,N:

0¢(j) = max [6,-1(i)as] - bj(or) (3.8)

1<i<N

[FIRER ‘A GFEE: WA AT b; (o), PR RO ERKIE SR Z !
Uy (j) = arg @%[&_1@)%] (3.9)

$IB 3: &IE5E# (Backtracking) J6ik #I4 s5 f K AR

P* = max r(i)
1<i<N

gr = arg max or(i)
RIEHE o A B E R

¢ =Vin(gy,), t=T-1,T-2,...,1
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3.4.3 Viterbi EX{H{LHL

def viterbi_algorithm(0, pi, A, B):
# delta HHMEE, psi FHEZE X
delta = zeros(T, N)

psi = zeros(T, N)

# 1. WHEN

for i in range(N):
delta[0][i] = pil[i] = B[i][0[0]]
psi[0][i] = 0

# 2. i
for t in range(l, T):
for j in range(N):
# WE —HABA @ L ERBMERA
max_val = -1
max_idx = -1
for i in range(N):
p = deltalt-1]1[i] * A[i][j]
if p > max_val:
max_val = p
i

max_idx =

deltal[t][j] = max_val * B[jl[0[t]]
psiltl[j] = max_idx # 10fE: LN 1 KXW

# 3. [E#
path = zeros(T)
path[T-1] = argmax(deltal[T-1]) # £ A &K E R &

for t in range(T-2, -1, -1):
# AT — 82 & pathlt+1], HM—HZZANBERHW? £ psi
path[t] = psilt+1][ path[t+1] ]

return path
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3.4.4 Viterbi H% KR AR RS EBRE
Viterbi FIAT A 5SS, HEATA ZIAER, Wi BERAE, IR REN B
&5,
BlF: Viterbi BiE——RZIKHMKEIRIFER
JELLHT T I 5, WL .
O = (YKL, VKL, 0Z)

B FBOIRAS «
S = {lgK (Sunny), K (Rainy)}

TS 254 R HI [ B0
0.7 0.3 0.9 0.1
m=(0.6,04), A= , B=
0.4 0.6 0.2 0.8

Viterbi TE2E N :

0:(1) = max P(q1,.-,G-1,q =1,01,...,0(\)

q1y.--s qt—1
B BTt RMIME] O, ...,0,, HIEE t KABIRE i A=,
[E] A0 R A2
Yy(i) = arg m?X[(St—l(j) xon

F—X (t=1): WL

81 (W) = g - by (01) = 0.6 - 0.9 = 0.54

51(|_‘ﬁ) = Ty ° bfﬁ(Ol) =04-0.2=0.08

HAR
V(1) =0, (W) =0 (EB—RKEREK)

LXK (t=2):
PR AR A B

02 (H5) = max (61 (W) - amy, wy, 01(F) - agg, wy) - by (02)
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HAHA -

5> (H) = max(0.54 - 0.7, 0.08 - 0.4) - 0.9 = max(0.378,0.032) - 0.9 = 0.3402

o () = M RKR (28 0.378 > 0.032)

02 (M) = max(0.54 - 0.3, 0.08 - 0.6) - 0.2 = max(0.162,0.048) - 0.2 = 0.0324

Yo (M) = MHERRI (I8 0.162 > 0.048)

fFE: - 0o(HE) = 0.3402: BT RAIBIVKIEHR, 5 R R KR AR, -
So(WY) = 0.0324: FIPHRMI B VKELAR, 56 RN R AMREAT . - o(i): TCFH
— AT — REPRSETRATZNE S FRAIRE R 5K

E=ZXR (t=3): WH o3 = &Iz

03(H5) = max(02("5) - any, uy, 02(F¥) - agg, wy) - by (03)

H

63(H) = max(0.3402 - 0.7, 0.0324 - 0.4) - 0.1 = max(0.23814,0.01296) - 0.1 = 0.023814

V3 () = IR KM (K2 0.23814 > 0.01296)

03(FM¥) = max(0.3402 - 0.3, 0.0324 - 0.6) - 0.8 = max(0.10206,0.01944) - 0.8 = 0.081648

Y3(FN) = MIERRI (A 0.10206 > 0.01944)
gk RIRABENRE—RRKES
P* = max(65(1%), 65(F ) = max(0.023814, 0.081648) = 0.081648

g3 = MR (BEREK)
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Bk &R LES 12 :

g5 = WK

@ = 3(q3) = ¥s3(W) = BER

q = a(qs) = %(Hjﬁz) = ER

Q" = (WK, lHR, WK)

INGE

Viterbi B2 RN 5 51 55 il B L 1 BRBCIRAS 7415 T AS A2 B A A ) BB

0, (1) RoRBIS t R, IREN @ ERBERERAE
Y1) WK B IBR AR AR, E T A [l
AT A SR E “RERSRAN Y, Viterbi & “MEFREUEK”, W#E 20 B,
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3.5 Forward-Backward B %: 7MW AT BB RHE R
3.5.1 HH4LZES| N\ Forward-Backward?
R, BANICEHE T m K LA
1. BIEESL (Forward): S H W75 H ISR P(O|N),
2. H4FEEEE (Viterbi): 5H —2& AT RENIBRES 12 .

Wy 4ERRLLEVER R 7. B RAH — &M% (Hard Decoding). {HUIR
AV “FE28 3 K, BARIBEMEBETRE WA, HESE B (IMEaEL
K27 HERFEL BN T XA ]

fRR: RANTFEL GR>ENE EMRRIEE, e “ Ewm” (BFHam K
PRAG R — NI 2 RS MR . X2 Forward-Backward %%

3.5.2 AMZLEE: a5
T PRI ¢ RAS, TR B A R — 4

: 1. BIEZEE o (i) (The Past)

EX: ERZ ¢, BB T FH (01,...,0,), HHAAPREIEUZ ¢ HIMEZ.
at(z> = P(017 <o 04, G = Z|)\)

AiE: WFARNALE, Z2HTHENAE, RLBAERS | OBE,

: 2. [FEEE 3(i) (The Future)

M FERZ] ¢ REN @ WRTHRT, AKAEEIMEIFFH (041, ..., or) FIHEE.
Bt(z) = P(0t+17 s 7OT|qt = i; )\>

At BRARIERL TRE i, MAZREE AR — B E0ER, BEH S K?

BEFE (RETE):

N
Zazg i (0641) * Bev1(4) (3.10)
j=1
AR ABFZ] ¢ RRE 0, BB T -2 A TROKRS j (a5), K4HT—8
ZIOGM 0,1 (b;), RBHELE j ZBHAR (Bii1)o
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3.5.3 BA: FBEEER ()
BLTE, FMIERZ) ¢ 45 “Jid” (o) A1 <K (B) 1EIRDS @ WbIC A

P(qt = Z,O|)\) = O!t(i) X 5t(Z)
{HIXH SR R B AR . FRATHE B LR (ECHMM O FIEH T, %
t IR @ BINER):
| | OE0
(i) = Pl = i[O, ) = =200 (3.11)
R SV a(3)BG)
o OF: BIARES 0 ARSI R A AR AR T

o S EREATIESIAEE (0 E T, ST POJA).

3.5.4 BUANMR S/
o HRAERD (Soft Decoding): H4EFFLLAy “HERRBIE” AF, ~ (i) &HUFEAT “1X—
KA 70% MEFR R, 30% W7 REREZHEESLRS ST AR EE,

o REBIZ3S] (Baum-Welch Ei%): X/ Forward-Backward # KR & .
WERBATA AWM ESE AR, fFilgs HMM 1125027 3-A1T7T
PUCRENLAS —HS 8, i () (B “X—RERRKRIHIE, K5
XAMAEE 2 B2 (iR BoRFER KRR R, Mk
RIAK NG T OKEH, ARG “BER — 12”7 KR . Xtk EM &
EE HMM H R A

3.5.5 4 EhIEAR

- Forward: MZEZIF, ORGSR, - Backward: MARIA, 0)5 AR A%
LK. - Forward-Backward: W44, HIFERATEANBREUIRSTERFF)H ORER .

39



Chapter 4

K-means 2285 EM &%

4.1 K-means 3. ETERNEESL

4.1.1 #%OBEESHFREH

K-means 7& — MR B ERR T4 B ERGE W DOES —4H)F 8 (Prototypes, Bl
) {u, ..., ury SRZIH . FVERIRZ G H AR S IMUFTEREA S 2 = B @ i O )
PR LR AR R 2 e IXA™ H bR bR EHE AR Al A2 i £ (Distortion Function):

T(rom) =Y 0> raellwn — uell? (4.1)

n=1 k=1
HH o, £faRZ & (Indicator Variable), F/nZ n MEARTETH k ME:

1, R, #orlsmiks
Tok =
' 0, 7N
4.1.2 HERRPEEMA (Coordinate Descent)
K-means FVERIEMGIRESERR b2l AR T IR T R

1. BEE p, R r (DED):
NTE T &/, ST 2, RATBIUEFERELL |2, — ]| BADKIBA F:

1, Wk = argmin, ||z, — p?
Tnk =
0, W

>

KPR 3B (Hard Assignment), FA—NREATER/TE A, E2ATR
J&T
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2. BIZE r, it n (BFH):
J KT e B IREE X g RFFEALHA 0:

8.J a
— =9 E — =0
A N
_1 Tnkd
[y = anl k+&n

Zfz\[:l Tnk
WIELE S BRSO g TR RFENFTA S LT E L (Mean).
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4.2 EIREEFS: EM BAIFH#E

4.2.1 EEER: SRTENSHMIT

FEPLSEE S, AR 2 Bl A O R S RATEE B B AR &R, RONRAER
(Latent Variables) Z.

o MUBHE: X (n: KFEHEED

o [EARE: Z (e PR, WRIR HURNE B @, ARIEIXAGZET L, TR
FoAZ &)

o U 0 (W BAEFRHDHASE p, 00, KER p, 02)

iR Z 25, AT AEEABRCRAMG T (MLE) 5K 0. {HIE Z RABHELT,
SHEUBLAR R B
L(0) = log P(X|0) =log »  P(X, Z|0)
Z

DR E S IR IEA RS, RART),

4.2.2 BIAIEHE: K-Means BIHAZAR
EM SyEm LEE R K-Means HEREIERIEIL (Soft) FRA.
o K-Means (B%3K): —PMrEalwT A%, ZaJgT BE (085 D.

o EM (BREER): —/F 70% MEERET A 25, 30% MR ET B 2K,

4.2.3 EM EEHZLRTE

HbR: SR BREEL £(0) = log P(X|0). L5 NBEEE Z M504 Q(Z),
AW 5t (ELBOD.
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BEHE: EM EXNAESIANK

1. E # (Expectation) — “JEH%E": B UATHKIZSE 0,00, THERNEERE S
BTSN RRESHEEME (RAE Z M)

Qi(z?V) = P(z(i)]x(i); Ooid)
At RFPAEG I HH5H, HEIARFEGOBER 0.8
2. M # (Maximization) — “ES¥”: A E PEHAME (BED, =¥
THHEZH O, ERFIIEIRER AL .

). 6
new = arg max Z Z Qz IOg W

[ Z()

B DAL 0.8 NFAEF 0.2 Mecd, THHHEFT XAEGFH TS,

4.2.4 EHiFEtb: Q BH
EM SR B R 2400 L(0), T2l ik E— 4 T % (Lower Bound)
E-step (M%) : BA1k “B” BREBLET LAMSHAG 00, HHERAER Z [
JERMER P(Z|X,00). WG BEOR BRI, B Q EXL:
Q(6,0") => " P(Z]X,69)log P(X, Z|0) (4.2)
Z

ANEME: BRA T Z BRAS Y, RAEAESATART 7 B mE, 3t
“MBhn g 7 B EGPAR R R BEAT A2 .

M-step (RAKE): HIIK “1&” SHEIKBGILXNMHEBR Q mKIISH 0,
EANT —RMZSH:

o1t — arg max Q(6,0W)
4.2.5 HBNVH: SHCEEERE (GMM)
FHiH L GMM 655 EM. BEdE 2 H K Ao AR am s .
o AR B DEdE AR TR AN E oA .
o« 2800 BAEMMAAMKIINE s HITE S, YIRS REL 7
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GMM 1 M B A0 (Kl BriME . 55T HrA B s fimser, A2 2%
JBTER kSRR

new _ Doiey V(Z) i 43
M leil’Y(sz) ( : )

4.3 RERHT: K-means & EM H$5{

X AR B EIEAR P SHE . K-means SEPr ER2& SR GHEA (GMM) 7ENRIR %
R EM BIESZHL
4.3.1 ®E: M\ GMM Bt

A& L2 BRI E R A A (GMM):

o BURAEM: A K ANmEiiamatt.

o VI 220 I [ i < AR BT e BT AL R B T 22 R AR e BRTADIR ELAH S, B 20y = el
(e BITED

o RIOMERAMAE: BAEEOE T ROMERMSE, B o, = .
BRI, VRS ORI B R o RRER

SN 1
Plelid) = 3. g e (—cle = ml?)
k=1

4.3.2 S E-step: MNIXHECRIEE HEC
£ EM [ E-step #, BATFENEFEAR o, BT kL MWEKEMZE (BT EE y.0:

TN (20| g, €1)
S TN (g, €I)
RANFATRAC R, AL, 153

exp (=g llwn — ml?)
Tnk = K 1 5
> e exp (=gl — 15012)

KEMIR: e > 0 REZEMFA?

o XFTERE z, BRI D s (o, — el AN, HAREORAE B L 4% &
FHUAL

44



o XFFHAR AL, FREITARXT T BILHAR A b &I T 0.

KltE, 2 e— 0:

1, Rk = argmin; ||a, — p;l?
Ynk —7
0, HAt

ZEie: GMM W5 ME%E (Soft Assignment) IBHK T K-means K8 REE 1,
(Hard Assignment ),

4.3.3 S M-step: MNFEHIRIE WL
7E EM ] M-step H1, GMM 5 ME KA R B .
new __ Zgzl YnkLn

My = N
Zn:l Tnk
HTAE e — 0 FIIRIRT, v ZBCTIE 0 B 1 8 vy, AEA:

new __ Zneck Ln _ 1
W= T T o] 2
zn€Cy

£5i8: XIER K-means ) “HF0” DI (EARLD.,

4.3.4 245 MENXHEHKRR

L4 953 K-means EM (BT GMM)

B AN T3 Be (Hard): ARELEDGE AT (Soft): HERJE T
BRI | BUREIRRO AT, TEMERMRAD | A& NI, J7 2R AE]
G B R AR (0/1) FESENER (0 %] 1 2 J8])
LB R | m/AMEERIREE 5 A1 (Distortion) | KRR EAISR (Log-Likelihood)
HEERE B, sk BCE, TFEARBON T E R

% 4.1: K-means 5 EM #IX 5l 58 &

4.4 EM EZXx—RiES
4.4.1 PBIEEN: AHAREEIERXE?
RN TENAALR ZH 0, UL KA E B X X SR R 2L L(6) = log P(X6)
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o FEEEBAENOL: WARBIEC SR X MEEE Z, i (X, Z2), WHRZ
log P(X, Z|0). XRREZNAN

o NEEBEHRRENL: BAINE X, AR 7 Rul. BAOTHE Z #7044k GRH
B
L(0) = log P(X|0) = log > P(X, Z|f)
Z

PRIAE R X ECRR R log LIRSS 17—/ RAFES Y0 X PEORSR, SMSH R EME
i, TEARIENTE. EM BRIz 0 B2 BINEERAS 3 W3] log 1)
ShT %

4.5 EM EZx—RiES

4.5.1 [AJ@ERN: ATAREEIEKRS?

RN TENAALR ZH 0, UL KA E B X X SR B 2L L(6) = log P(X6)

o TERHIEIEN: WRLHFEASMNATE X MEEEE 7, B (X, 2), WHFZ
log P(X, Z|0). XZBEDMAT

o ANTEEFIREN: RAVAF X, BAE Z KA. BOITFEXS Z #1718%40 CGRA
AR
L(0) = log P(X|0) =log > P(X, Z|0)
Z

WIXE R SRR AL log BIHR S 17— SRS Y. XIECRIN, SMSHREHRS
fE—ile, THEARIENTAE. EM BRI 0 B HINEERAS S W log 1)
SR %

4.5.2 ELBO 5 Jensen &3
R T log A1 ST WY, FATHFHZESIA Jensen AFEI.

1. Jensen £33\ (Jensen’s Inequality)

WKL f(x) ZM K%L (Concave) (FlH0 f(z) =logx, Z—FrS M <00, 4. “HA
BEMEBATHFTRYUREIE”

f(Elz]) = E[f ()]
R :

log <sz$z> 2 sz‘ log(z;)
Hrr p; MR (R 1,

46



2. #SIHETE (ELBO)

N T EH Jensen AERAILN, FHATTIAN—DRTEALE Z FHERI Q(Z) G
Y, Q(Z) = 1o X HARBRHGIAT AL

L(0) = logZP<X, Z10) (4.4)
=g > Q) PIX, Z)‘e) T A BRI Q(2)) (15)
_ P(X,Z|0)
P Jensen ANEEF (3 log ZEHSEHAEE B[]
X P(X, Z16) P(X, Z|6)
1 _— .
ogZQ 07 >ZQ 07 (4.7)

ANRAEAHFRN ELBO (Evidence Lower Bound)s

ELBO(Q,6) = ZQ )log P(X, Z|0) — ZQ )V og Q(Z

EM SEARIZRZ: BRI EZR A L(0), FAIANR K ER T 7 ELBO.

4.5.3 EM BT FERE
EM FEAR ERAPR ETHZ (Coordinate Ascent):
« BB [HE 0, WE Q(2) 1§15 F 5t ELBO RATREMGIE L(0) (RMESE5 R
« M. [HE Q(2), % 6 113 ELBO & Ak,

1. E £: WaFEFESHKIL?

Jensen ANFEXHESHIFAZ: BN RERZHH. Rl g(zz‘e =co KT Q(2)
PVAEWT P(X, Z10). HIEE] Q(Z) &M, Ham Ui ke 55

Q*(Z) = P(Z|X,0°)
bR ELBO 85T L(6).

2. M 2: mALHAE

¥ Q*(Z) RN ELBO, XXt 0 KRS RN 0 I (EIE Q(2)logQ(Z) 1T, M &
(1) B A5 R B -

new __ old
0 —argmgxsz:P(Z|X,9 )log P(X, Z10)

Kt BATAEVE AT A 21K Q(0, 0°') BREL
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4.6 HMM g9 EM: Baum-Welch AT

o /R A RAERY (HMM) 280 18 % A Baum-Welch 5%, & SEkr Bl
EM H95AE HMM H i Bk se .
4.6.1 HMM 2HEX

BATFEZS] HMM I =HSH A = (A, B, 7):

o m WIRREMRERE, 7 =Pz =1).

o A: WREEBHIE, aj = Pz = jlze = 1)

o B: REMEFIEE, b;(k) = Pl = klz = j) CRE j B0 k& R,

4.6.2 E £: HEAIPBRITE

N AT M PR, AT BRI A AT R)-J5 % (Forward-Backward) 5 HI PR
Al & 4 M &

1. v (1): BHR ¢ SEFHRES @« BIBEER
N H O RIS A, TERTZ ¢ BROIRAN @ AR

\ N — P L = O,)\ _ Oét(l)ﬁt(l)
W= a0 = 6 0)
H o ZATFME, 8 2GR,
2. &(i,5): BZIt i B t+1 7 j BOEER
XN T HHERHER A HE.
gt(i,j) _ P(Zt =0, 241 = j|O,)\) _ at(i)aijbj<0t+l)ﬁt+l(j>

S 2;\;1 (1) ai;b;(0r41) Beya (5)
4.6.3 M #: SHEHLAN (FiH)
ARJFAE MBS S TR D
1. EFERES ©

B = 1 MU T RS RS

T = 71(i)
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2. EHEEBIERE A

MR
Y M R R R IREL
D Y UY)

L/ T—1 .

Zt:1 'Yt(z)

3. Efi&GI3ER B

5 () — PR Lok (Il
’ W&y R
I_)'(k _ Zthl,ot:k Ye(J)
’ 23:1 Y:(7)
RS R BN AR L I IE A S35+ e OIS %1

~—

il

FER A FHRA ST,
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Chapter 5

HESF S &AL ZtR)3515% 03

5.1 HasF WL

5.1.1 #HlBFEFEINENX
« Arthur Samuel (1959) EX: FL#%32& “FEAEBEMEMFL T, WP HE
DRSS AL ST T A
.TmmNmmﬂ(W%)EX:*[ﬁﬁmﬁﬁM%%E¢ﬁﬂE%T,#%ﬁ
R POoRMTE. WRMELR B RN, £E5% T ket P& T, il
:—» “,—l,j » T‘

5.1.2 HEsZF Iz Es

71%”””‘7El’]ﬁ@ﬁ%mMiﬂE*?ﬁéﬂ@ CEREL fOo MIBUTZTIAR, T2
IHN=

« HEE%E3] (Supervised Learning): ZITHR. AR (2,y). HIRL B
= f(z). Cln: 432, EHID

ﬁ%

o MBS (Unsupervised Learning): H%. AL 2. Hbr2 R IEDE
W& . (. . R4

« 3B{LF 3] (Reinforcement Learning): MHITPa2. i “IRE-1E- 2”7
Feale Hbr K s ok Ak .

5.1.3 EAAKIE
o B (Instance/Sample): —2FdEdx, #Hlan “X A PERELR”.
o $HE (Feature/Attribute): fHIRFEAHIENE, Flan “ . R, BE 7

20



o ¥riE (Label): FRATETM AR, Flun “4f /RN 80 “mis 7,

o $¥{EZ|8) (Feature Space): FT A FEALIEN 2.

o RIE=IE] (Hypothesis Space): W A] RE 2 B I BT BN AR & . 3] RE a2
TEAR 15 2 B L 2R e A4 & B I AR AR

5.1.4 HHFI=EH
1. & (Model): FATEZIMRBUL, HlIINZMAER f(2) = wr + b.

2. 5RE& (Strategy): PPAIBIALFIRRT L, WL HIREREL (Loss Function). HAxriE
m/MESRR (88 MRS/ IME + S5 XU B /ME / IETIAED .

3. Bk (Algorithm): RN SH, @B T (Gradient Descent).

5.2 Z&[E]Y)3 (Linear Regression)
LAk )3 e A 2 M) [ AR AR 22—, F T HNESEE . e & o S A2
By ZIAFELMER R

5.2.1 1REIENX

EX: tEyIHREY

Bir: #3—H fRP - R, RS EMARLAE » € RP, Hl%m
H g RATREEGE HSE .

. BEmR. )
fz)=wiz+b= ijxj +5b
j=1
o SYRAA:

—w=(wy,...,wp)" EWENE, FINEREREZM.
— beR EMMED (Intercept), FYFRIHBELRAZL T JH A,

BRi%: AR SR AR R,

FELEPERIA T, FATHESS MR IRBI BRI SE w 1 b, RTINS R .
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5.2.2 HKkEH: ¥HFIRE (MSE)
EX: ¥)7F1RZE (Mean Squared Error)
1 i &
= Z W= Z (whz; +b))?
o N: FEAREZL

oy B0 MERMIELL
o fla): B i AMRERRITE.

Pk e Ml B 1 P S O SHE R 2R, AT H AR R /ME L(w, b) .

5.2.3 XESHNGE
Sk [ UE 2 B W R OR AT 1 SENTRERIBAE T 1%

f##r#% (Normal Equation)
XFF /NS, T DL E PR A s R R S

= (X"X)"' X"y

Hrr X € RV*P BEEARFHIERFE, SATRAEARFHENE; v RY ZHARRE,
& b ] LB E X PiRin—a4 1 k—IFER
0K =

o PR EHEORME, LRI K.
o B H D BN RKE, XTX REIHHEEKR, HAlge A (FHEE.

#E TP (Gradient Descent)
SR RPN R RS =K SULL TS IR S A R S R7Y

oL

L
wew—ng—, b(—b—n%
w

Horpon 252K,
TR R HO ZHUBE LA -
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N

2 2 & b
aw —N —U) i — .I'Z, ——NZ ’LU XT; —

=1

AN Sl T%% ABREETT IR BT S, R BRI, AR AL
(EEIYEEIS =)
5.2.4 ZelERIYA/NGE

o RN St 2 RAFEL IR R

o BT URZE R ERH FHHIA R BR AL

o ZHCRAE] LU I g g BRI

o fWE b ABE w 2R ]G,

5.3 1Z%8[EY3 (Logistic Regression)

JEEEwﬁdﬂ? PIAT S5 I FE AR, K50 — 028 (0/1, 1R/ DR, Bt /3D,
A L AL I RFAEBEAT AR LR PE RS, R da I 2 BUBE RV [0, 1], M sy

%t@

5.3.1 MENIR| S
oM RS S EVE, AEAEEHT . 7RIS T E M — IR,
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EX: 1ZEEEIRE
. BELRK:

1

Py =1|z) = 0(2) = o(w 'z + b) = 14 o—(@lath)

. TFSULAR:
— z e RP: B NFFILFIE .
- weRP: REME.
- beR: WED.
— z=wlz+b: GHEHE.
— o(z): Sigmoid Wi RREL, F Ltk LSS 2] (0,1).
—yc{0,1}: I,

Mt Py = 1]z) AT DUPEREONFEA R T IESSAOMEA, S0 U3 % 2 -

5.3.2 FERHBUERE
FOE R B o R A BT 5] NAEZR MRS, R 4 s 4 2148 e X (] -
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EX: BRHERH

« Sigmoid:

1
a(z)::1_+€_z € (0,1)
s LA TSRS M
 Tanh (WHERIEY]): .
tanh(z) = Zz _T_ :_Z € (-1,1)

SN HEAT AL U, H T REEZ -
« ReLU (Rectified Linear Unit):
ReLU(z) = max(0, z)
TR, MRRBEEEIE RIS, TR B2 4%
« Softmax (%7 %):

Softmax(z;) = ¢ , i=1,...

Z]K:1 €%
¥4 2 A L L IR A0, 3, Softmax(z,) = L.

K

Y

5.3.3 IKRE: MENA / NN
12 (B R XS BRI BRI, R 43 9828 Uik

EX: 1ZEEIARK R

N
L(w,b) = = [yilog @i + (1 — y;)log(1 — §:)], 8 = o(w”z; +b)

=1

B RABUSR AN T e/ ME T BULLSR
N: FEAREL
yi: HREE.

i TRUAEES .

BEAN
T2 A [ V45 5% R B30T IR B N Bk i 2 4
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oL oL
P Z(?]z — Yi)Ti, o Z(Qz — Yi)

L
wew—ng—w, b<—b—n—r0

Hrp g R,

5.3.4 IEN{L: BFlEiEilE
N T RS LS, AT DATE 35 2 2R B0 i N 1B )4k T

EX: ZEEREYIENL

« L2 IENE (Ridge):
Lyeg = L+ A3

EARER R, R,

« L1 IEM{L (Lasso):
Lyeg = L+ Al|wllx

AP AR, A RHIE I ROR .
- FFSiRAER:
— A>0: IENEGREE, X BOK, RATEE.
= llwlly =325 [wjl, lwllf = 32, wj

5.3.5 iZiEMEJA/NGE
o B MR A Sigmoid MU ARMER, EA T HRITE.
o R R ECR HON BULIR 55 S
o ZHAATT A BEE T RE
o AL IENALET IEE S, RFHZARETT.

o WUEKEL (Sigmoid/Tanh/ReLU/Softmax) $2ALAELIERT, W o & H] £ 73 K5

TR PEM 2% o
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Chapter 6

iR EFE ]

6.0.1 EAX#EZ5 MDP fjtdH

SRALZE SRR 2 R REAR (Agent) TEIASE (Environment) HH i iU >k 2% ) SRE 1
AR B ERIR N ER ARSI FE (MDP): (S, A, P, R,7)-

ENX: MDP #%%LEE

1. S (State): RA&ZE (WL ALEE).
2. A (Action): ZHEZE] (FEMEED.

3. P (Transition Probability): P(s'|s,a). £ s il a, HWEALR s’ GAEET
AHRENE, W ERED.

4. R (Reward): R(s,a). MEE4HISLED it O R EHE T

5. v (Discount Factor): « € [0,1]. I+ EIZMFEE, v =0 REL,
v — 1 FBEEE,

EX: K&

FWE (Policy) m & XL NERETE S £, XEhEZE] A B — DKM

m(a|s) & Pr(Ay=a|S;=35), Vs€S, acA.
I B A2 M 0 AT R HE A I

m(a|s)>0, Y wla|s)=1, VseS.
acA

Holt, m(a|s) RAERE s FIEREIE o B,




6.0.2 [E4R (Return) S5#{EEH (Value Function)
Hir: s R RRER G,

Gi=Rip1 +YRiy2 + V’Ryjz + - = Z Y Ririn
N1V “CBAERPIRESEAL”, TATE XL T HAMZ O R

1. KEMERE V. (s)
TERZ s, WRARIZIRIRNS © Gk R 2%, PR Z /b7

Vi(s) = Ex[G|S; = 5] (6.1)

2. EMERE Q. (s,a)

A s, (RAEEITAIE o (NI ARAIRN), S5 L 5 TR « 5,
TR

\ :Zl':,\)

Qr(s,a) = E;[G|S; = s, Ay = a] (6.2)

6.0.3 DU/R277%E (Bellman Equation)
XJE RL iEHR: HEiiiE = SLEVRE + EHARKRMNE.

1. JURSHIERRE GHAIIARE)

Vo(s) = w(als) |R(s,a) +7 ) P(s']s,a)Va(s)

a€A s'eS
N 7

TR BT

£ BRI T, R R(s,a) RonEIRE s FHATEIE o FrafaE BT 2 .

Bellman 2751280 5 — S0 2 202 K 2 i i 3t 5 SO 5 IR e A8 A K 1 eR 2
BRI IR AT E A

= Zw(ays) Z P(S, | S, CL) [R(& a, 3/) + 'YVW(S/)]

acA s'eS

Hi, R(s,a,s") FomBIRE s THATIE o FFEBBIT RS o IR HIRII
Jilyo

R ERNFN IR : € X

R(s,a) = Egp(isa) [ R(s,a,s) ZP "Is,a)R(s,a,s"),

s'eS

o8



s vl S S ALIPSY P G 7 v

R, XA Bellman 187 RREHU BRI, 22 AR T 22 fih ok 25 i i A
Jia: WPE RN (s, ) BIRREL ISRt o K TR, BRKMEERRD; &
BRI (s, a,5") FIRREL, R ZIMHBELRS .
2. NREBHEMAE (FH&ERE)

WMRBA DA ERLFIIE (Greedy), AmMITE V*(s) THiL:
V*(s) = max | R(s,a) + 7 Z P(s'|s,a)V*(s") (6.3)

RPR AU AERAIRET, BRI G LB AR R a KA Bh T
Hrp

6.1 k# MDP: &8 vs. LiRH
o HHA (Model-based): T P Al R (A LA, fEtE).

o AL (Model-free): A%1 P Ml R (FHR—4KE, HAEEAER).

6.1.1 EHT Monte Carlo XM {EREEFHN

HABME Monte Carlo (MC) J775iHid FERE I AL RKAL THME R L, AHBIA B3
B, USSR AR PIFEART

(SOa g, 71,51, 01,72, ... 7ST)
HAZ 0 AR

—RZHEE L (episode) WEFEIR, TR L AREIRE - FNE A
FANABE i 411

B4R (Return) BIEX MRFED ¢ FHAGHI R T HriniEEkE 8-
T—t—-1

K
G = E YTttt
k=0

Hr T Fosizbl &2 1k 2.
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Monte Carlo IXSINMERBEEF T4 EFENE 7, Monte Carlo J7iEEH IR G, B
B HEHRRAS B R 2
V(St) < V(St> + Q[Gt — V(St)}

Horpr
o Gy RIIRE s R MBS BT EHR;
o ZHEHEM X V(s) BATREARIE AL
o AAFAE bootstrap (HZS), UK E LK.

Monte Carlo FMEMEFRBER  FUUh, Z/EN R BT 0L R 7 R
Q(s6,ar) = Q(s, ar) + a[Gr — Q(s1, a4)]

TV E AR — U S PR A B AT 0 2 R AT ST
Monte Carlo 753&M45 &

« Model-free: /3 L2 B i

o TlRfEit: G RS IR R AG

. BAE: BAPUTEEIKR, IRSE,

o AGIERIE: AUGEH T episodic 1£5%;

o EIREH: FTEREE KA BB ME

6.1.2 ZhFSHIXI (DP): REERSMNMEER

AR R A B (Model-based) MDP (A% 0 J59%. BIR 2 RATC AR EL 1
N1 P(s'|s,a) FI2EJhREL R(s,a).

REEIF (Policy Evaluation)

Hbr: 295€ DN, tFEAZAE N APIRES M E R Vi(s)o XMLt
BN, EAETHSEOL P A A S ATk

Vit (s Zﬂ' als) | R(s,a) —l—fyZP(s’\s,a)Vk(s’)

BEIERIREL & — oo, MMEBREISAE] V,
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RE&IEFH (Policy Improvement)

Hbs: A7 Ve(s) JG, WL RS o'? J5ikg 572540 (Greedy). fE3E
MRE s, HEGEFILANRELL Q- (s, a) BAHIBNE:

7'(s) = argmax Q,(s,a) = argmax | R(s,a) + 72 P(s'|s,a)Vy(s")
ARSI e, o 2R« 2

RELIEX (Policy Iteration)
B bR P AT 34T -
1 PPAS: THECURTSRRS © 1V, GEHHEZ ERE RS0,

2. &It WRIE Ve A ROHT I SR SRS 7
—HEL, HIRAHEA, SRRy R R 1.

M 1EIZEX (Value Iteration)

RMGIEARTE “VPE” DIBRFETLWS K12 7. MMEEAKEILRE L BTS2
SMZFATHETE CRPHE Bellman F AL 5 B % N S5 0] o

IHEIEACE R A

Vit (s) = max | R(s,a) + 7 3 P(s']s,)Vi(s)

EAER VEWSL, e RIS IE R

6.1.3 TD 5 SARSA
FFE5% 3 TD(0)

RHEEE  fEHT Monte Carlo E’HMEW{E???%EP, RSN EREL V (s) HITERHRI T
—IRGERPIE TR EER G KRR

o W% episode £ 1L G A REREAT B HT

o ANEHTHEAMEAES (continuing tasks);

o IR G, FTERK, FAEREARE

NV FIR AR, B FEZ4y (Temporal Difference, TD) 2% ) ik H .
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¥ BA8 (Temporal Difference)  TD J5ikfii% O AR :
AR T —r 2 a4, RGBS AT e 2] a9 A T,
H
I “AGTHIARR” SRR “ 4RI, X — AR bootstrap (H %),
TD Jiikd&
« Monte Carlo (] model-free F§{:;

e Dynamic Programming [1'] bootstrapping &48.

TD(0) EHAR WFAEHM TD A TD(0), HEHARN:

V(St) < V(St) + « Rt+1 + '}/V(St+1) — V(St)
- ~——

TD Target L

/\I:FI:
o a€(0,1] NFEIE,
o TD Target &4k T — AL HAFEIM Bl AL TS

o FHH I TD Error -5 .

TD Error (FIFEDIRE) & X TD Error J:
6t = Rip1 + 9V (Si1) — V(Sh)
HAFE R S
o & > 0: UACRESMEARAS, B EHE,
o 6 <0: HECREBOEH A, BN
o 6 =0: HFIETS— B —3K.

TD(0) B &5 A :
V(St) A V(St) + ady
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TD(0) BEAEERR Xt TD Target 41 S, = s FHUWHE, 1.

E[Ri +7V(Ser) | S = 5] = 3" nlals) 3 P(s')s, ) [R(s,0,8) + V()]

ZHEIEUE 2 Bellman HIEE R & 0E/E, U8 TD(0) AT AN 3T Bell-
man FEHE)—EHENLITIA-

TD(0) HEERIE
1. WA E RS V(s) FEEMED;
2. @%Eﬂ% ™ E%iﬁifﬁy ’/fﬁE‘l“@J (St, Rt+1, St+1);

3. 715 TD Error:
Oy = Rep1 + 7V (Sie1) — V(S)

4. FOHTUME R AL
V(Sy) < V(Sy) + ad,

5. B BT —IRGS, EE BRI

TD(0) B4R EEE
« Model-free: A EIAEIHY;
o HEEF: - DHEAE
o XEFFEES: BRZ RS
o RAZE: B MC, FH HRERE;
o Bt dHT bootstrap, FIAME.

Monte Carlo. TD 5 DP W% —f
i R AR BE B AR =17 Bootstrap

DP &= Bellman 2 &
MC &5 G %
TD(0) 5 Riv1 + 9V (Sii1) =

TD J5¥%A4LF Monte Carlo 5 Dynamic Programming 2 [8], 1ESZFR5HEA 2% 2] n) @
Wz R
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SARSA (On-policy)

SARSA & TD BEALEEH] (Control) @l BTN H. BIEFIIHN: S, — A, —
Rt+1 — St+1 — At+1°

BEERTR
SARSA FEHAR

Q(S, A) « Q(S, 4) + a[R+7Q(S", A) — Q(S, A)]

FBEX ]«

o Q-Learning (Off-policy): 115 Target BHEH max, Q(S',a). BF: BT —
ATREELE (GRZ), HIRF PRI T — PG mir (203,

« SARSA (On-policy): THH Target BAEH Q(S', A'). Bl: T —HSLhrik T A4/, K
A A BIUHERE . ST

* PR : SARSA HEEH/N (LR, BREESLSEE; Q-Learning HLHIKMH,
T ERMNFANEEEEREI (FMNEBEEE A KRIR). *

6.1.4 Q-Learning &HjX

LB Q-Learning & —F model-free. off-policy [H#a k% S] 5k, HIEA T EH
SR BRORA R P(s']s, a), RSB S ABINEARLSR (50,7, ),
BB SIEMEBRE Q(s, o) BAFIEMAER, BEBERRAEN R Q" (s, a).
HR 0 bR R
Qs,a) — Q*(s,0)

SEZ AV
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Q-Learning 5 # 5

Q(s,a) + Q(s,a) —i—oz[r—i—vmgx@(s’,a’)— Q(s,a) ]
a ——

Estimate C(HaI{5)

TD Target (B
ENE*:
Q(s,a) < (1 — a)Q(s,a) + a(r + v max Q(s' a'))

o € (0,1] (FEAEHD): REHEBXFIHM T B SRR

—a K: FREHR, HEGK

—a/h: FRE, B,

o TD Target (N FZHIR): ZET—IREXIZERIIHX HFPRE-SIEX
HEHHE R, EFERI 22050 r AR — R3S 8 e e U el 4k .

e TD Error (BFZENRZE):

5= r+ymaxQ(s,a') - Q(s,a)

Ron A HT AT S B SEII 2 A 22, R AREh 2 3] T I BEAE 5 .

RESFA (Exploration vs. Exploitation)
f£ Q-Learning MZrE R, B REAATE ZAERE— D RSN (A1 — A 8 i) 2«
REFGATA KRR FE, TR EZ XS HE?
KIEAmi 2 ) SRE-FIARE.

FIM (Exploitation)  AMRIRES s T, EHAET Q HEKKIBNE:
a = argmax Q(s, a)
(9=e
o FEOAIH CA R
o LR AR .
TR

65



o I REI LB E L SRS 5
o TIERIEATENE R ILiE).

RZE (Exploration) RZEIBMNEEZNE, DESRECHRERE .
=¥

o BHLERILTE LN

o RIPIRE SRR N E R
R

o JEI BRI

o HERRSEREIREK,

e-Greedy RlgE (REA)  eGreedy & —F7ESLE A & H IR R A H ST kg, H
5E AR
argmax Q(s,a), LVIHEZEL - (FIH)
m(als) = ¢
BEHLIEE G € A, DIERe (RR)
Hr e e|0,1] EHIRERE
o e K: RRZ, EHIHWIIN;
o e/h: MHZ, EEIZEMN.
TESCBRRI I F, HR A IERIR R RS
e L0 FEIIZRECBOZH RN
PAPRUESEVEE R IA AR IRER, 185 AR IS S I SR

6.2 REEHE: MBfrE#HZE REINFORCE

6.2.1 AMFLFBZRWHEE (PG)?

Q-Learning 577523 TMMER (Value-based), & SRMEZHE N CGEHE Q H ).
H PG 2T KK (Policy-based), BHIESHLIEE my(als).

o AR HEES S A A
o WTRLZESIREALSRES (Ui kBT T .
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6.2.2 HRIEHEEEES REINFORCE

Hprgm KA AR J(0) = B, [G]o FATEXS 6 RKELEE BTt ARYE SR 6 B2 e
H
VoJ(0) = E,,[Vologmg(als) - Gy

X5 H T REINFORCE &%
1. Tu— BRI, WEEHE,

2. ME—L, KRR G, RUFH QEED, S —LaERME (B Viegr J7
[EIDERR U =27 N PN T S

6.2.3 EHZk (Baseline) fFH%E

REINFORCE RFE Z K. N TikbgriReE, FATIIAN—DNEEL b(s) G 2
REME V(s)):
VoJ(0) ~ Z(Ve log mg(a|s:)) (G — b(st))

T (Gy— V(se)) BHNIFHEEL (Advantage) Ao * B WEREFIKIZ Gy HAFKF
V(s i, AESIRAE; SWEME G RIEFERTFE, hEMHE

6.3 PPO: B BIFHN (E,ﬁ/\‘t)

PPO (Proximal Policy Optimization) /& ERH RL B3 (B4 ChatGPT #8
fEAD. B TRPO ML

6.3.1 EEEMRFELLE (Importance Sampling Ratio)
N T EEHM R IH NS mo 77 A2 B R BB SR o, AT =R

o (a|s:)
Wozd(atlst)

r(0) =

i—ﬁ@z&old Hﬂ‘y thlo

6.3.2 PPO-Clip B#rE

N T 7 1 S T A K SR, PPO SEHIIRH r(0) 7E[L— .14 2
.
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BERER
PPO Clip H#x (£518)

LCLIP(@) - [min (rt(e)flt, clip(r¢(6),1 —¢,1 + E)At>]

o Ay >0 (BMELE): BREI IR W8 vy KK CGHURBSTEXASIE LR TR 2),
it clip £, BiibidilG.

o A <0 (BMEZE): IREITHR. Wk r, KN RTFHELAZ), thclip .

6.3.3 GAE (ERM#EMHIT)

Generalized Advantage Estimation (GAE) &—MiHHMHE A, 1777, AT Pk
EMTTZE. EFH T N SHAE TD w22 MC R AT .

6.4 RLHF (X374 ER#EFEER

RLHF (Reinforcement Learning from Human Feedback) &4 LLM 5 A FEE WX
F R
6.4.1 Step 1: BRI (SFT)

E— A E R ENEESE (Prompt, Response) EATARAERIIRE 2> (MLE).

1
max Z og me(y|x)

(z,y)eD

SRR 5 S

6.4.2 Step 2: ZEE (RM) MNRIFFES]

W — MR 7y (2, y) KREEGTNEIT 7o NBARIE RSNy, (win) Ty,
(loss) #EATELAL. RM B HARRLE v, HKIFF 0y &

Lant = —E(u gy~ 1080 (14 (2, y0) — ro(z, 1))

6.4.3 Step 3: A PPO ik KL #=R
BANIAEEFTER mp AN ARG RM Km0, HXARES “57 17 Gl
fan tHELAG SR 23D e 2 R ITE S RE ). DR, SRR R BTt

mo(y| )
msrr(y|x)

R(x,y) = ry(z,y) — Blog
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HA s 02 KL #U% (KL Divergence) &I, A TR MY mp AEWE SFT
B mgpr KL,
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Chapter 7

BEEREES NLP: M N-gram %

Transformer

B HHA (Language Model, LM) s& NLP %00 TR UL, 5 5 B TS
H—AAT CRIEFFAD IR P(wy,w,, ... wr), BEE T /A IR BER

P(wt-l—l‘wla . 7wt)°

7.1 H#IVENS5IEEEE

7.1.1 EXEHER5HIEN (Chain Rule)

Al T AR AT S = (wi, wa, ..., wp), AT BRI A FAF
N ABEAAERBER . ARIEBEAR A BE IR, S MR AT DL fif 26 R 1) 3fe
M

P(S) == P(wl,wg, . ,U)T) == P(wl) . P(w2|w1) . P(w3|w1,w2) s P(wT|w1, e 7wT_1)
(7.1)
B 5 R AR 2K

ERRET
EEHEMEA AR

T

H P(wi|wy, ..., wi1)

t=1

3
=
I

o WIS S —ANRITIHMBIOEER, T W MA IR SRl AR A
CANTE O T 26 AN B HEAR” -eeeee PAESSHE .
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o BRI EDTEK, FE LT (w,. .. w, ) FALA MRS HEER
Ko WAL KAN V], EFCKEA L, MBEEN |VIE, X3 E L
AT e CHARRHE 8D .

7.1.2 N-gram #&&: S/RAIXRIE

N T RRZEURNER R, AT5I SR AT KA ¥ (Markov Assumption): B3 24 Hif
W w, BIHILR 5 BRI n — 1 AMEA IS, 5 5E R PRIk,
X E N-gram (N JoiEyk) B4

P(wt|w1, R 7wt—1) ~ P(wt]wt_nH, R ,wt_l) (72)

E WA N-gram 28!
1. Unigram (—7JG, N=1):
T
P(S) ~ [ ] Plw)
t=1
FEA NG ERC, R A B (“RAREEAL ),

2. Bigram (G, N=2):
T

P(S) ~ H P(wi|wy_q)

t=1

2 iR A BCRTRT AN

3. Trigram (=76, N=3):

SHEIT: RXURMET (MLE)

N-gram M2 38 & 8 G811 18R ZE iR AR 15 . 6T Bigram #78, RER11 5
NS

Count(w_1, wy)

(7.3)

PMLE(wt|wt—1> - Count(wt 1)

B BN (wym, we) —EEHBLARE” BRUL “ B w,_y BB S RE
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BB HEE: N-gram BERM4E

o KIEBKHi (Long-term Dependency): N-gram JoiEfli#eat N /i B 251
BXRAR (Flw: “The boy ...... is running”).

o MiEiE (Sparsity): ﬁﬂ%*/\ N JCHEIGTER AR B, HEE N0, =
FEENTFHMER 0. BHEFEII AP (Smoothing) HiR (41 Laplace
RN 2

7.2 TEErR: RXEBEREKE

BT — AN S BRI 2 L PRI %4 BUSE 0 8) T 20 B s MR, 2R S I
) T AR
7.2.1 fHIUSR (Negative Log-Likelihood, NLL)

TEVRRE S ST VP JRA V300 3 S S5/ P 452 K B ORI R BT TR0 4 D = {w, ..., wn}s
B RALBRIESE P(D) S T i IME SIS HUR

T
Ly =— Y log P(w|we) (7.4)

t=1

E: WTHER0,1] e, BRAFEBAAT G, BATHT AR REH A 0
j%o

7.2.2 XX (Cross Entropy)

ME BB AE, 85 BRIk H br 2 BB A0 240 A Q IR AT REREI Sk
BAE AT Po X T o0 2800 CHUI T — ANl 2 AR R T i 28, 38 XU E SON:

ZP )log Q(z

BB ST, HSI9A P J& One-hot & CF—Mal@&ifEn), KA kst
bR gt A2 H AR ) NLLo

7.2.3 [EZXE (Perplexity, PPL)
RS R NLP e PP R bR, B2 BRI TEEOE
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WREEE AT (F 1)
P(wla"'awT>

PPL = 2H(®Q)

S

PPL(S) = P(wy,...,wr)~

BCE R RS H 2R -

| R B B B AR

o W X PPL FRIREAAETON R —ANmm, B3] “NZ” pFEE. tn] DI
R0 3 230 (Average Branching Factor) o

b WU%

— WK PPL = 1, UMM, Seafelmd b (GeseiiilD,

— & PPL = 1000, UiBHMBM GG T —/NMEA 1000 Frfge, A TFHE—
1000 HIMELF EEE -

o ZE: PPL /N, BELERLT,

7.3 BEHNRR: NHFSEIRE

THENUCIR ERE AR SRR XA S, DA LA T

7.3.1 JH#AZmES (One-hot Encoding)
KR REIRTE . RERA V AN, BMARR A Vb E .
o SEH: [1,0,0,0,...]
o &H: [0,1,0,0,...]
B A ERBA:
L 4ERERRIE: WRWAEAS 10 FGAME, MEKEHRZ 10 77, WRER.

2. 1 X ARE PR A AR CRBUN 000 tFRNLICIATHE “3E R f1 “ &
B M, WIERE e )E T KR
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7.3.2 JA#RA (Word Embedding) 5 Word2Vec

iR : 7RI (Distributional Hypothesis) “A word is known by the
company it keeps.” ———/AN18 82 X & € B B 6918 Bk .

Word2Vec KRR A B B —AMIRE (G 512 48D B # B9 Se i s ) v

BB HER . Word2Vec BIFRFNIIZZEH

BB T HN: “The cat sat on the mat”s

« CBOW (Continuous Bag of Words):
— AR5 AR A B ] T HhCa A
o iﬁ)\ mr]:\hen7 ”C&t”, ”OIl”, ”the”‘ — iﬁ& msatm
— e BIEGEIRIEST, EE/NEUE.

o Skip-gram:
— AES% . AR O v TR JE A
o Eﬁ-ﬁ]\: cnsatm - iﬁﬁldj: mThew, ”(Zat”, ﬂonn’ wthem

— el BRI RS, MNAERRRIZCRE GRFEXED.

HEFHrME: FEEE RS HIE R R

U(King) — v(Man) + v(Woman) ~ v(Queen)

7.4 FH)iEHE: )\ RNN Z| Transformer

1 Transformer HILZ 77, RNN AT K H £, (B AAE™E 0] &80,

7.4.1 MEIHENLE (RNN) REE

RNN S FHZ “HBAT” B S5828 AN, AR hy, BB ZAME, 45
/ﬁ\ hl EEEE hgo

o R BEWALEARKFS.

o SRA (BREEH /BB ARAS) . SR TARKE (i 100 ANAD, ERBIEJA R, 5 1
A B O R REMERIE T ER T

E: LSTM (KAGHTIT M 2 ) 8L 5] N “TIIEALH] " LM T AR, 2R R R HFHAT
tH, BAR.
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7.4.2 Transformer %!

2017 % Google $2t Transformer, IR TG LR, BAREET Attention (VF
=1 M.

o JHTUE: PrawRNRA, AEE D
o RFEME: LA T 2K, EEWAMEZE KRR 1 CEEHEAHE M.,

7.5 1¥fE: BEENIWE (Self-Attention)
KRR R R 5 DEET— M5 HE X

751 Q, K,V HIES X

RN FI AR 2, RATEE =TT 222 R we, wr WY
HAMER I N =

« Query (Q): Eifj[AIE. AR “ LHTIXMABIA AFEAHE R
« Key (K): #FE. AR “HATZMAQ S ARERRIEREE .

o Value (V): fHIIE. RF < GATIXEHEERAR

7.5.2 OLLANES

. QKT
Attention(Q, K, V') = softmax V
Vdy,

L QK™ (MUVETHER): THEHATAK Q MAhrain il K Maf. s, o
PN G AR R (Bl “ng” A “SERD . R — D BOERE (Attention

Scores) .
2. L (4 Scaling): %11 MHFABEMLE d,?

o MAELEE dp RAK, BB RSAEE K.

o KHELIL Softmax 7, BEREAHAITT 0 CBEENJO. 4HHURA T IEH i
] 5 EE UK IX

3. Softmax (JA—4L): R B NMR 34T BUEANTN 1),
4. XV (IBCRAN): ARGEACE, EHrERK VIR, B850 RETRR .
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7.5.3 %3LEEJ (Multi-Head Attention)
I LB “ 2R
o BBANEE, BOGEEEGHN, XOGERARR, EREBREER.

o ZREWELRFEYISREH, §—H (Head) ZIEANFEMIE LA, HEH
K.

7.5.4 fIE4HS (Positional Encoding)

K49 Transformer ZIFATHIAK, EAKE “FEZ/R” A “IREZI” Him Fr i X ).
R NG ENEIN LM E A GETIEZ/REERED, SRR RS T B
Ho

7.6 KIZEESEANIZ=IH (ChatGPT JRIE)

BUEM LLM (40 GPT-4) YIZRidFE T LGN : “ RS — FImEZ - Ak
AR

7.6.1 [ME—: 7%k (Pre-training) —3R 1§13

{£5%5: Next Token Prediction (LFHEM). BIE: HIMN ERFESCA (TB 40D,
BAR: s RIURREL P(w|we, ... wimq)e GER: A2 TIEVA. AR, HEREBE
Jo ABERA “30B; 7, AEANEIRS (RIE “BABERE”, BERREES “H 10
JE” AR ERERZ.

7.6.2 FEZ: BEERGE (SFT) —%3iES

Supervised Fine-Tuning. ##E: AN LHEMEAE “RB-ZE” X L%
TFE: TSR AR -, AIXEeIR Rl . R SRS T “Xhal”, X
B PN RAZEE, MARSEE. i REALEEERTT, mMEBARRE
BRRENEE, RREE “TARE” .

7.6.3 BEE=: RLHF (BT AERIZHELES) X FFN B

XHEE ChatGPT 2213 “BN” MKHE. 2 N="T5%:
1. SFT (B5EM): 3D 587,

2. MR (Reward Model, RM):
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o ik SFT AN [F]—AN M A R 4 M RIZE (A, B, C, D).

o NFARERHHTHY (ki A > C > B > D), MAZREETS FHF T
S HEWD .

o WGP RM, AR “F@ 4+ \%”7, 2 MrEs. H
prAgil RM BT 0 75 6 ASRHIHET -
3. PPO 5&#t%%>] (Proximal Policy Optimization):

« #Ei: H P Prompt.
o Bfgf: BEER,
o B AR R
o MJh: RM 4H5r 5.
o Bhr: EEESEHMMSE, hEAREE RN RM IR E 55
« 4 (KL Divergence): N T BiiEBACA T m4r A 5 &G (Hack 2EIHAD ,
=R, BT AT AN E w2 SFT R KT
BERT vs. GPT (% W% f1)
« BERT (Encoder-only): XU[a|BEf#. B EEHT . EKHEBES HED
e 438,

« GPT (Decoder-only): B4R GMOCr e (AR LD . EKA R
% OWiE. 51E).
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Chapter 8
RME: T EH T

8.1 MTCHYAER: MEEREEI4FE

8.1.1 ItEHIRHIER

NRFE IR« — R 7, THENLE 2 — D =4 (Tensor) o 3 F—3K 224 %224
IR EE R, THENFE -

Image € REXW*C¢

Hb H =224 (), W =224 (%), C = 3 (RGB 1@i#). #kik: R EHHIX 150,528 4~

BEREENGIN (Flatten) i Ema e, SHESBRIE, HERRERZHET
7 (A AR IR 2R o

8.2 EHMAMNLE (CNN) — il EA

CNN 24923 & (Hubel Fl Wiesel &I K B J2 G X4 8 J7 0] 26 25 SN R 48
M), I THTHEEBUS ARE
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8.2.1 AR

1. £fE (Convolution Layer)

T BUFFE

BAHEE: BBtk FREEHRAMR
BRIRER —RERREEm, FREG - DIFERE BB/ Filter/Kernel).

o PRMZE EFITS, B —/IBXIE

o REIFHREACGEIRY, @A LS. R FBARIERZE (i
—RBLED MhE EERYIEG, hTRREE, BEMSRK GE).

o IRAZREERIE T (Stride) 1HENEEIT A, EEIFHM7E B HEE,

KBS (Hyperparameters):
o Kernel Size (K): FHEEFR/N GEF 3 x3 85 x5).

. Stride (S): HK. HUHMIEE. 5 = 1 FEM, S =2 2FEMMEN (%
4,

. Padding (P): 7. AT RLBGERER, RE N T HREMM RS RAE, 725
Pl L — B 0.

W RS A AR N Wi, B8 K, 2K S, e P. FihiR

TJ‘ Wout y\j:
Wi, — K + 2P

S
E: R HERT AL, BF @ TR,

+1

Wout =

2. BIEERE (Activation - ReLU)
GRRRLMIZE G N TG ERMARLIE T, D5 NAFL LRI

ReLU(z) = max(0, )
ER: LNEEE. AV “Ms)” AERERES, JORE SR RRHE.
3. {tE (Pooling) —&4+TH
Bi: Wb HE, ¥ REEZEREZE (Receptive Field), Biibidlsa .

« Max Pooling: 7E 2 x 2 B 1 R BRI NME
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o WP S REEXA DAL T “IRES” XL, Bt e, AAErE X
e B TAEE CPEAZMD.,

8.3 BUGERIER: it AI fiBEHEEKH
8.3.1 HpKiEBUELLT
o FABAY (Discriminative): fiA x (), Hith v (05%%). (ZHIELM? )
o AR (Generative): = IHIEMI A P(x), RGN RFEAERBGHY 2. (i
— HUB)
8.3.2 GAN (EmRATHMLE)
JRIB: {#HZRL,

o LAY (Generator, G): WEREPM. FIABALEERS 2, MHRE G(2). HirZwit
D.

o F5¥5 (Discriminator, D): 0400l BAE ), FllE HELEZRE. Bis2H
G

o GifR: . G AR ERIGER, D EE CARBERN 0.5),

R WERMATRE (M IRAERID L), &5 A S (Mode Collapse, R
A AR D

8.4 I BURE! (Diffusion Models) i¥f#

X B AT e st a9 £ RAEAR (Stable Diffusion, Sora, DALL-E 3 ¢ 354) .

8.4.1 txLE: IREEE#R
P BRI A, A ELE (R R

o HIMIEFE (Forward / Diffusion Process): A7 — /7. #EE— MK R S=K,
B A — PEAE SV BRI . AR I TR HERS ,  PEGOB AR i Atk 1) vy BT 7

o JMIEFE (Reverse / Denoising Process): ¥ — H)F. X2 Al B2 24
EHIRFELCERE R, AR BREBORE R, B YRR, G EHIEWN E
‘.
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8.4.2 HF|RIBHET
1. BIEIEFE (INkE)

KR —AEE R REE, AFRENGR. XTI ¢, AE ¢ — 1 B2 EHE E

TN e e

Ty =1 — Bexy_q + \/Ee, e ~N(0,1)

W ¢ 25K C(Hbin 1000 22), ap 3R T 4lim #ilg s,

2. RIS (KBRS
RATE G A0S GRS UNet 250, SRR LR po(re1|z0)-

R i MIEBRAET A2 F12E FRUOVE Mg ERMABS, fil
—akEE KA. !

o BN AR ZIFME R 2 4+ BED ¢ (4 XA embedding) .
o Huih: TR BA SR ¢ A4

PN YN
E—2B G, = HETEU 2, — T E R e (4, )

(. SEPRA S ER AT 2, (E0ERARMETUNRIESE).

3. XA5|5 (Text Conditioning)
At aFATAT BB« — N7 Rz AR a2
o /] CLIP S8 ALRK SCA AL A [ # Embedding.
o KX A EN Cross-Attention (32 X3 & 77) HLHIEANZE] UNet 48— ZH.

o UNet fEFUMEF I, SPOCRRE “HiW 7, ROREAT G SOR IR BB RAE, %
BRANET B IRRFAL o
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8.4.3 GAN vs. Diffusion Xttt (B3 R%)

i GAN (¥ 4g) | Diffusion (¥ 5HREY)
ERRE | m, HEHKHE WS, MFEE

SN | R (BEHR) = (78 o e R A
WEMERE | A (HiARRE) B o (AT B4 2R B )
IR | R (—IRAERR) & (ALt / LE )

8.5 GAN: Min-Max Bfr5&MFIFIEHES

8.5.1 EABFREKH (Min-Max Objective)
GAN B ose —NEMIHZE (Zero-Sum Game).

o FIIEE D: AEEIMX S IUERRE S . B D(x) — 1 (2E), D(G(2) — 0 (B
).

o A G FHEE/IMEHBIE KB E R . Bk D(G(2) — 1.
XA T — AR N OR AR ) 3«
min max V(D, G) = Bovp,,,, o log D(@)] + Bavp. o log(1 = DG(2))]  (81)

8.5.2 HmMHAEE D*(v) HIHES

A e A G, AT ARG D AR REF I TATRITRE sl 7 .
REWMMIDAGA Py(x), WE IR LG T « KI5

V(D,G) - / (Paara() log D(x) + P, () log(1 — D(x))] dx

NTREKAE, SHBSNEXT D(r) RFIFLSHN 0. Wy = D(z), BECH fy) =
alogy + blog(l —y).

’fJﬁ\)\ a = Pdata(l'), b= Pg(l’)a ’T%é“ﬂiﬁﬁ#”ﬁu ﬁi

QR ik

_ Pdata(x)
Piata () + Py(x)

D*(x)

Bit: i RELGAERIEE K Piug EXTERERL Py, FAEHZME 1o o
EAEAE, Wl 0.5
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8.5.3 5 JS MEMXAR
HHNEERR D i, WEREHIFEE V(D G), G HraAfnT IER:
max V(D,G) =2 JS(Pyaal| Py) — log4
4518 JRR GAN BJUIZRAS i e e B /MU L SE 73 AT 5 28 il A 2Z T8 1 JS U (Jensen-

Shannon Divergence).

8.5.4 JEIBFNE kR (Non-saturating Loss)

FEINGRATH, A AR AR S, FI R SR 5 X 43, D(G(2)) ~ 0. BLHF R 46457 2% min log(1—
D(G(2))) BIBAEEAEH F2& (Saturating, FREEHR), SEEFAS). TRESLEME: Ak
/ME log(1 — D), BChERAE log D

Lo = —E:[log D(G(2))]

X H PR B “ARBRANSIR 7, BESR At B aRAORR R

8.6 VAE: T/ H4mAEE (Variational Auto-Encoder)

8.6.1 Hir5ZLHFIE

FANA R BT 2 AR o, BEK P(z) = [ P(z]z)P(2)dz. (HEXMEG
IRAER . BATHIN—MERINE (GiSE) Qu(z|r) RITBAESLMELR P(z|z).

o Encoder Q4(z|x): AWK =, fit » FMHE p M7 o2

o Decoder Py(z|z): HA z, E&EE z.

8.6.2 ELBO #% (RERESZ—)
FUT EM 50, BAIA BB HAIR log P(o).

B B P(z,2)
log P(z) = log/P(x,z)dz =logE. g [Q(ZM)}
FIF Jensen AN
P(x,z)
Q(z]z)

log P(z) > E,.q {log } = ELBO

¥ ELBO ¥ NERS (VAE HIHK R ED:
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VAE iR = EIR + KL §UE

Lyap = Exrgllog Py(e|2)] ~ KL(Qy(z12)|P(2))

HEHJIN (Reconstruction) IENT (Regularization)

o HEMI: A 2 ek JiHEEKE GEEH MSE =),
o KL Ti: AEMMLEN 2 MM EIAMEIES A N(0,1), Filgwmigss “{Eig”
Yoty

8.6.3 ELHFI5 (Reparameterization Trick)

AR AEMER PR BEAT “BENIREE” 2 ~ N, 02) SR TBIER EMEREE LR (DR
P2 BRUIBENLAT ). MRORTT SR AGBENLIERE RS 2] — N MOL RS e b

z=pu+oc0oe €e~N(0,I)

X, 2 BARR T RT p Mo BT R BB RE AT U I

8.7 HEUREL: mImMME. REIEMESIIZER

8.7.1 HIEEEE gz 1)

AT A R R — AN ] I Sy /R AT R, B — 2P NN R g s
Q($t|ﬂ3t71) = N(l't; V1= B, 51‘,[)

EENZ t P EREERAEER AT E PP HE, U EEMN v 2.2 = 1-8, 00 =
H§:1 3

J
0

H

1 = Vaurg + V1 —ae, e~N(0,1)

8.7.2 RENI*E py(zi_1|z:)

BATEAN AP P LIEIT H LMK g2 |2e)o BIR qlap o) RAER, HIRD
K xg, ERFMER. BATTLERHZRILE 5 TN e B 0 AT I EIE g AT ZE

po(ze_i|zy) = N(@i—1; po(xe, t), Bo(x4, 1))
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8.7.3 IZLB#fr: FNIEERNBIAIRE

23t B AR E L (DDPM 30, &R ELBO S8 T 1h 28 X 25 Tl hin
ANHIEEFE €,

S R BRATEE v0 AR ¢ 5] 2y, IFHE o0 AT, (I
é%: “]X]Uj—j]nﬁgﬂﬁgﬁ'é%,f+/l\?»

Esimple — ]Et,xo,e ||€ — €p (ﬁxo ay V Il — O_étg t)||2

T

8.7.4 FHHEMS CFG (#E25%)

ik AT W AUE? bl “m— H IS, Classifier-Free Guidance (CFG)
S IAE PR HENGS . ISR, FI 4N E CA ¢ (Cond), AINAL (Uncond, TF4F).
A BCRAERS,  FRATTEE &P T -

€g = 69(1}) +w - (69(1‘,5, C) - 69(1}))
o w (Guidance Scale): 5|5 RHL.

o w> 1MW, SWESCRN EERER] T, AEEBER AR, HE KaSBEEB K
H ERIBUNE).
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Chapter 9

B 1IBE(ESAIE

9.1 FEEHYIESHZFHL
9.1.1 FEEN=ZEZ

o & (Pitch): HIMIZE (Frequency) HE. SF A HIR (LHE), PRLHEHI
(FEF).

o MFE (Loudness): H#RME (Amplitude) €. PRIEKHE 5
o & (Timbre): HYEIE (Waveform) HiE. X ENEEFI/ NGRS OCHE .

9.1.2 RMESHFML (ADC)
THEVAEA TIEZLIP, HEefF A
o SKFF (Sampling): W [EF BRI S EUL. D)2/ T] (0 44.1kHz) .,

o ®EAL (Quantization): HHl (FRME) MIBSHUAL. &— IV RIMEH 2 7 — i)
Fon (H1 16-bit ).

9.2 HFEIRHEN: MBTIEE|SusaY A

XJE AT ACFRE S AT EAZ 0D IR . EIEE st & 2 O IR 22, BRANT TR 2
FEHURHIE .
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9.2.1 {EEMNMTH (Fourier Transform)
BRI BIALW: NESRIE

o WIH/55 (Time Domain): RFHAT—MIRERITUE CBE R AR 1) 3
). IR EEE B eHAEREERRE, & HED.

o EMNAR# (FT): —GMITHHLE, ERIETIEICFEREE.

o WUIH(E5 (Frequency Domain): B#HHHR. BHIFK: XEMAE 30% M5
B (RATBO. 20% KA Chait) A 50% B4 CRsid) .

it MR IIPIE, #8AT AR N B A FESER . A EPRIE ) IR 525 1S
piIe

9.2.2 AEiE[E (Spectrogram)
W F AL NS, X/ CNN/Transformer AbFETE 35 FIARERIN o
o TEfh: WA (Time).
o Ok B (Frequency).

o PRI BEE /WA (Magnitude). BIEEBSRE, XA AL XA
R .

o) E. #pFE EY 100Hz — 200Hz Z 8, #1 10000Hz — 10100Hz )2 #H 2 —FE
(#B52 100Hz) . HANFITEER, X HEKR, FEEILVTFIAL K. R ANHXH=E
ARG R XS B o ARG, SR E . A3

9.2.3 1/RZIE (Mel Scale)

f
* 700)
Mel Spectrogram: 7E¥@7 i EIIEAL L, $EHE OfiZ) IR Mel ZIREk oy
G, A £ AT SR

Mel(f) = 2595 - log,, (1

9.3 BEAM (TTS) mitiks

1155 ISR (Text) — HiHEE (Audio).
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9.3.1 ImElimE IR IR

1. BEYIEE (Autoregressive)

X3 : Tacotron

RIB: 18 RNN —FF, Al —rmEE, BAER T . K -0t . #%
IDHLED: T Attention (JERE 1) SRXTFUAFIE S . B AapHREE:

o HEELNE: DAUAATAERG EIEIFAT

o EMEZE (Robustness): &% HILIFTEL (Skipping) Bt 13 (Repeating). R EH: At-
tention #E %A AR Z A AT, BB RFaid “HREMR” HET CRT FERA, TiT
BARE—A3 “REE.

2. IEBMEYIAER! (Non-Autoregressive)

X3k : FastSpeech
XAFRGE BH &L, BET Tacotron 495 &o
i BlF: 2T (Explicit Duration Prediction) FastSpeech A N: A
TR H OFE Attention HEEFFRNFIREZ A, ML T IR — MERSRIII S .
B ##E: FastSpeech M T{ERTE
L. BERmIY: WASCKRFRES] (a0 “4REF”), i Encoder £33 1] & .
2. KK TMLS (Duration Predictor):
o XA ANHIEIE M
o BN ARV REE.
o M. H 10 IR AR ZAFELSE 10 DMTED.
KA IR
o MRABEFMAIEAS, 8 “UR” B EE S 10 4.
o I8 “HF7 WmEEMR 15 4 (BRETIN 15D,
o PHEEXR, BR—NMS5SRATHKE -BHKFI.

3. KET48 (Length Regulator)

4. RS ERE: Decoder FAT HuHEIX L8 [m] S 40 N = E  .
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FastSpeech )= KAt
1. M. JRITAR, B Tacotron R 38 (EHEF £ .
2. MefERRE: RO B AT f s sl 2 hl 0y, AR ESR.

3. AldEtERE. AEEAOEE? R T EEINE RN KS — x1.5 88 x0.5 BIA],

9.4.1 ZIRESFE (Multimodal Fusion)
FRI AL AFRET (HE NLP) 8BETF (R CV).

o Think-Then-React: &FIZhE () — BHEEE GEF /) — Ml N (T
VSPE

« AV-ASR (Audio-Visual ASR): FIHETE (BLHAEE) K4HBI7ETE R85 T 155
ol
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